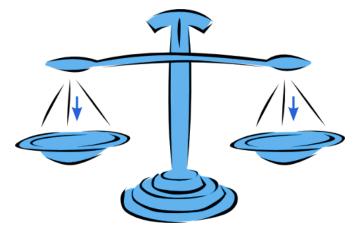
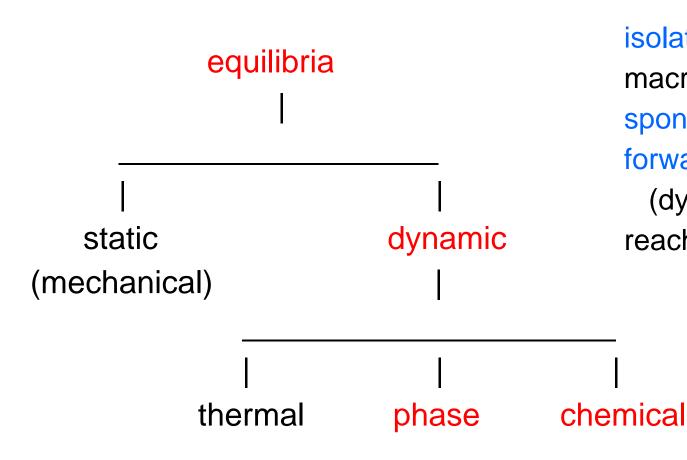
CHEM 116 – Honors and Majors General and Analytical Chemistry I 2 Exams, 6 Quizzes, 7 Labs, 9 Weeks HWK - 595 points (1245 in course)

EII:	AVE = 108 (72%)	Range: 49 - 148			C	Class Averages			
EI:	AVE = 87 (58%)				EXAM	1	195	65%	
					QZ		37	61%	
					LAB		118	84%	
	Q1 6.0	Q5 6.5			HWK		73	77%	
	Q3 4.2	Q6 6.1							
	Q4 7.8	Q7 6.1			Cours	Course Grade Estimate			
						А	75%		
	E1 19	E5 16	L5	18		В	65%	class average 72.1%	
	E2 17	E7 12***				С	50%	GPA 3.1	
	L3 18	SP 17				D	40%	7+	

Chemical Equilibrium


"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888



- 6.2 The Equilibrium Constant
- 6.3 Equilibrium Expressions Involving Pressures
- 6.4, 6.9 The Concept of Activity and Equilibria Involving Real Gases (See Harris 8-2)
- 6.5 Heterogeneous Equilibria

Please check your grades on Blackboard – Friday is drop date – talk with me FIRST!

The Equilibrium Condition

attributes of equilibrium

isolated from outside interference
macroscopic properties constant
spontaneously reach equilibrium state
forward rate = reverse rate
 (dynamically balanced)
reached from products or reactants

The Equilibrium Condition

Our emphasis will be on chemical equilibria but occasionally we will encounter phase equilibria

phase boundaries in a phase diagram; colligative properties examine phase equilibria in mixtures, primarily in liquids

steady state - system with macrosopic concentrations not changing with time but it is not at equilibrium; rather than a dynamic balance between forward and reverse processes a steady state is achieved by competiton between a process that supplies components and another process that removes components; common for chemical reactions in biological systems

Arrows of Chemistry – Different Equilibrium Constants

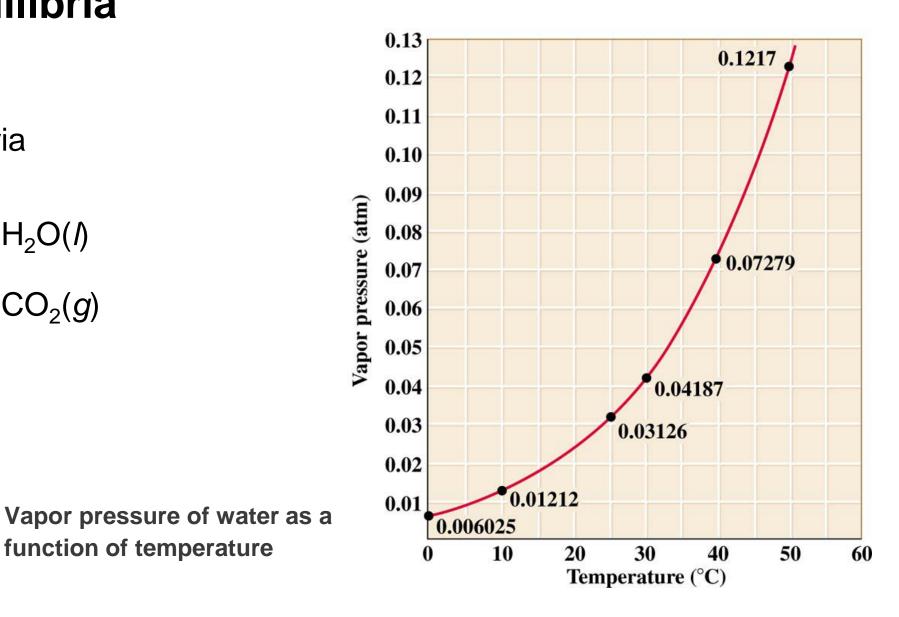
reaction $Aa^+(aa) + CI^+(aa) =$

 $Ag^+(aq) + CI^-(aq) \rightarrow AgCI(s)$

resonance $O = S - O \iff O - S = O$

equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

equilibrium constant, K


- K concentration (K_c) Zumdahl/Harris
- $K_{\rm P}$ pressure
- $K_{\rm a}$ ionization of weak acid
- $K_{\rm b}$ ionization of weak base
- K_{sp} dissolution of slightly soluble salt

Phase Equilibria

Phase Equilibria

 $H_2O(s) \rightleftharpoons H_2O(l)$ $CO_2(s) \rightleftharpoons CO_2(g)$

function of temperature

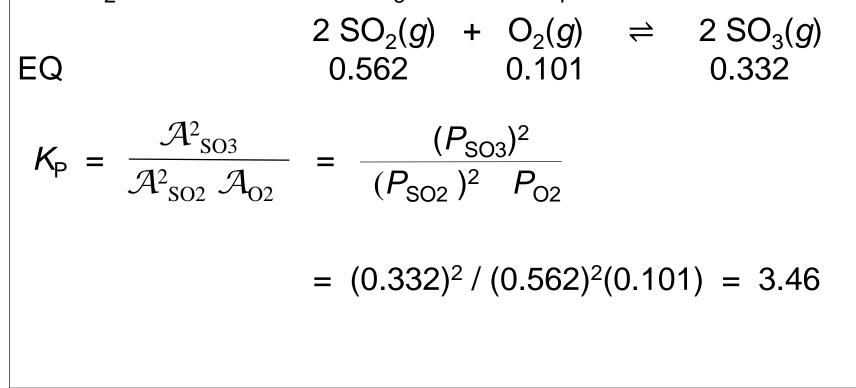
The Equilibrium Constant

Law of Mass Action

For $aA + bB \ll cC + dD$ the equilibrium constant *K* is

$$K = \frac{\mathcal{A}^{c}_{C} \mathcal{A}^{d}_{D}}{\mathcal{A}^{a}_{A} \mathcal{A}^{b}_{B}}$$

where \mathcal{A}_{A}^{a} is the activity (Zumdahl p. 178, 194; Harris p. 164) of species A raised to its stoichiometric coefficient a. Expression for activity depends upon how composition is expressed.


molarity (*K*), $\mathcal{A}_{A} = \gamma_{A}[A] / [ref]$ [ref] = 1 M $\mathcal{A} = 1$ for pure liquids, solids pressure (*K*_P), $\mathcal{A}_{A} = \gamma_{A}P_{A} / P_{ref}$ $P_{ref} = 1$ atm (bar) Reference composition is usually 1, insures equilibrium constant is unitless; γ

is the activity coefficient, where deviations from ideal gas or solution found.

 $\gamma = 1$ ideal gas, ideal solution (obeys Raoult's law)

The Equilibrium Constant

EX 1. At 1000 K the equilibrium gas mixture contains 0.562 atm SO₂, 0.101 atm O₂, and 0.332 atm SO₃. What is K_P ?

The Equilibrium Constant – K and K_P

EX 2. At 250°C the equilibrium concentrations are $[PCI_3] = [CI_2] = 0.280$ M and $[PCI_5] = 1.885$ M for $\begin{array}{rcl} \mathsf{PCI}_3(g) &+ & \mathsf{CI}_2(g) & \rightleftharpoons & \mathsf{PCI}_5(g) \\ 0.280 & & 0.280 & & 1.885 \end{array}$ EQ $K = \frac{[PCI_5]}{[PCI_3][CI_2]} = (1.885) / (0.280)^2 = 24.0 \qquad PV = nRT => P = (n/V)RT = MRT$ $= \frac{P_{\text{PCI5}} / RT}{(P_{\text{PCI3}} / RT) (P_{\text{CI2}} / RT)} = K_{\text{P}} / RT = 24.0 / (0.082)(250+273) = 0.056$ $K = K_{P} (RT)^{\Delta n}$ where $\Delta n = n_{prod} - n_{react}$

Heterogeneous Equilibria

EX 4. What is the value of *K* if an equilibrium mixture contains 1.0 mol Fe, I.0 × 10⁻³ mol O₂, and 2.0 mol Fe₂O₃(s) in a 2.0-L container'? 4 Fe(s) + 3 O₂(g) \Rightarrow 2 Fe₂O₃(s) EQ 1.0 / 2.0 1.0 × 10⁻³ / 2.0 2.0 / 2.0 $K = 1 / [O_2]^3 = 1 / (0.50 \times 10^{-3})^3$

= 8.0 × 10⁹

Relationship of K's of Related Equilibria

$$K_{\rm P} = 55.6 \text{ for}$$
 $H_2(g) + I_2(g) \rightleftharpoons 2 \text{ HI}(g)$

EX 5. For the above reaction $(K_{\rm P} = P_{\rm HI}^2 / P_{\rm H2} P_{\rm H2})$ what is $K_{\rm P}$ for: a) $2 H_2(g) + 2 I_2(g) \rightleftharpoons 4 HI(g)$ multiply all coefficients by $n \implies K_{new} = K_0^n$ b) $2 \operatorname{HI}(g) \rightleftharpoons \operatorname{H}_2(g) + \operatorname{I}_2(g)$ reverse reaction (multiply by -1) => $K_{\text{new}} = K_0^{-1} = 1 / K_0$ c) $\frac{1}{2} H_2(g) + \frac{1}{2} I_2(g) \rightleftharpoons HI(g)$ multiply all coefficients by $n = \frac{1}{2} \implies K_{new} = K_0^{\frac{1}{2}} = \sqrt{K_0}$