CHEM 116 - Honors and Majors General and Analytical Chemistry I

2 Exams, 6 Quizzes, 7 Labs, 9 Weeks HWK - 595 points (1245 in course)

EII: AVE = 108 (72\%)	Range: 49-148	Class Averages		
El: AVE = 87 (58\%)		EXAM	195	65\%
		QZ	37	61\%
		LAB	118	84\%
Q1 6.0	Q5 6.5	HWK	73	77\%
Q3 4.2	Q6 6.1			
Q4 7.8	Q7 6.1	Course	de Estim	ate
			75\%	
E1 19	E5 16 L5 18		65\%	class average 72.1\%
E2 17	E7 12***		50\%	GPA 3.1
L3 18	SP 17		40\%	7+

Chemical Equilibrium

"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888

6.1 The Equilibrium Condition

6.2 The Equilibrium Constant
6.3 Equilibrium Expressions Involving Pressures
6.4, 6.9 The Concept of Activity and Equilibria Involving Real Gases (See Harris 8-2)
6.5 Heterogeneous Equilibria

Please check your grades on Blackboard - Friday is drop date talk with me FIRST!

The Equilibrium Condition

The Equilibrium Condition

Our emphasis will be on chemical equilibria but occasionally we will encounter phase equilibria
phase boundaries in a phase diagram; colligative properties examine phase equilibria in mixtures, primarily in liquids
steady state - system with macrosopic concentrations not changing with time but it is not at equilibrium; rather than a dynamic balance between forward and reverse processes a steady state is achieved by competiton between a process that supplies components and another process that removes components; common for chemical reactions in biological systems

Arrows of Chemistry - Different Equilibrium Constants

reaction
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
resonance
$\mathrm{O}=\mathrm{S}-\mathrm{O} \leftrightarrow \mathrm{O}-\mathrm{S}=\mathrm{O}$
equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

Phase Equilibria

Phase Equilibria

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{CO}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{CO}_{2}(g)
\end{aligned}
$$

Vapor pressure of water as a function of temperature

The Equilibrium Constant

Law of Mass Action

For $\mathrm{aA}+\mathrm{bB}<=>\mathrm{cC}+\mathrm{dD}$ the equilibrium constant K is

$$
K=\frac{\mathcal{A}^{\mathrm{c}}{ }_{\mathrm{C}} \mathcal{A}_{\mathrm{D}}^{\mathrm{d}}}{\mathcal{A}^{\mathrm{a}} \mathcal{A}^{\mathrm{b}}{ }_{\mathrm{B}}}
$$

where $\mathcal{A}_{\mathrm{A}}^{\mathrm{a}}$ is the activity (Zumdahl p. 178, 194; Harris p. 164) of species A raised to its stoichiometric coefficient a. Expression for activity depends upon how composition is expressed.

```
molarity \((K), \mathcal{A}_{\mathrm{A}}=\gamma_{\mathrm{A}}[\mathrm{A}] /[\mathrm{ref}] \quad[\mathrm{ref}]=1 \mathrm{M} \quad \mathcal{A}=1\) for pure liquids, solids
pressure \(\left(K_{P}\right), \mathcal{A}_{\mathrm{A}}=\gamma_{\mathrm{A}} P_{\mathrm{A}} / P_{\text {ref }}\)
\(P_{\text {ref }}=1\) atm (bar)
```

Reference composition is usually 1, insures equilibrium constant is unitless; γ is the activity coefficient, where deviations from ideal gas or solution found.

[^0]
The Equilibrium Constant

EX 1. At 1000 K the equilibrium gas mixture contains $0.562 \mathrm{~atm} \mathrm{SO}_{2}, 0.101$ atm O_{2}, and $0.332 \mathrm{~atm} \mathrm{SO}_{3}$. What is K_{P} ?

$$
\begin{aligned}
& \begin{array}{c}
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \\
0.562
\end{array} \\
\mathrm{EQ} & \rightleftharpoons \begin{array}{c}
2 \mathrm{SO}_{3}(g) \\
0.332
\end{array} \\
K_{\mathrm{P}}=\frac{\mathcal{A}^{2}{ }_{\mathrm{SO} 3}}{\mathcal{A}_{\mathrm{SO} 2}^{2} \mathcal{A}_{\mathrm{O} 2}} & =\frac{\left(P_{\mathrm{SO} 3}\right)^{2}}{\left(P_{\mathrm{SO} 2}\right)^{2} P_{\mathrm{O} 2}} \\
& =(0.332)^{2} /(0.562)^{2}(0.101)=3.46
\end{aligned}
$$

The Equilibrium Constant $-K$ and K_{P}

EX 2. At $250^{\circ} \mathrm{C}$ the equilibrium concentrations are $\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=0.280 \mathrm{M}$ and $\left[\mathrm{PCl}_{5}\right]=1.885 \mathrm{M}$ for

$$
\begin{aligned}
& \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{PCl}_{5}(g) \\
& 0.280 \quad 0.280 \quad 1.885 \\
& K=\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}=(1.885) /(0.280)^{2}=24.0 \quad P V=n R T=P=(n / M) R T=M R T \\
& =\frac{P_{\mathrm{PCl} 5} / R T}{\left(P_{\mathrm{PCl} 3} / R T\right)\left(P_{\mathrm{Cl} 2} / R T\right)}=K_{\mathrm{P}} / R T=24.0 /(0.082)(250+273)=0.056
\end{aligned}
$$

$$
K=K_{\mathrm{P}}(R T)^{\Delta n} \quad \text { where } \Delta n=n_{\text {prod }}-n_{\text {react }}
$$

Heterogeneous Equilibria

EX 4. What is thc value of K if an equilibrium mixture contains $1.0 \mathrm{~mol} \mathrm{Fe}, \mathrm{I} .0$ $\times 10^{-3} \mathrm{~mol} \mathrm{O}_{2}$, and $2.0 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ in a $2.0-\mathrm{L}$ container'?

EQ \begin{tabular}{c}
$4 \mathrm{Fe}(\mathrm{s})$

$1.0 / 2.0$

$+$

$3 \mathrm{O}_{2}(\mathrm{~g})$

$1.0 \times 10^{-3} / 2.0$
\end{tabular}$\stackrel{2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})}{2.0 / 2.0}$

$K=1 /\left[\mathrm{O}_{2}\right]^{3}=1 /\left(0.50 \times 10^{-3}\right)^{3}$
$=\mathbf{8 . 0 \times 1 0 ^ { \mathbf { 9 } }}$

Relationship of K 's of Related Equilibria

$$
K_{\mathrm{P}}=55.6 \text { for } \quad \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

EX 5. For the above reaction $\left(K_{\mathrm{P}}=P_{\mathrm{HI}}^{2} / P_{\mathrm{H} 2} P_{\mathrm{I} 2}\right)$ what is K_{P} for:
a) $2 \mathrm{H}_{2}(g)+2 \mathrm{I}_{2}(g) \rightleftharpoons 4 \mathrm{HI}(g)$
multiply all coefficients by $n=>K_{\text {new }}=K_{o}{ }^{n}$
b) $2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$
reverse reaction (multiply by -1) $\Rightarrow>K_{\text {new }}=K_{0}{ }^{-1}=1 / K_{0}$
c) $1 / 2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{I}_{2}(g) \rightleftharpoons \mathrm{HI}(g)$
multiply all coefficients by $n=1 / 2 \Rightarrow K_{\text {new }}=K_{0}^{1 / 2}=\sqrt{ } K_{0}$

[^0]: $\gamma=1$ ideal gas, ideal solution (obeys Raoult's law)

